

Contents

	cuTWED v2.0.2.
	About

	Getting Started

	Troubleshooting and Known Issues

	License

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

cuTWED v2.0.2.

[image: Made With Python] [https://www.python.org/]

[image: DOI badge] [https://doi.org/10.5281/zenodo.3842261]
[image: GPLv3 license] [http://perso.crans.org/besson/LICENSE.html]
[image: GitHub release] [https://GitHub.com/garrettwrong/cuTWED/releases/]
[image: Open Source Love svg1] [https://github.com/ellerbrock/open-source-badges/]
[image: Gitlab CI Badge] [https://gitlab.com/geebdubya/cuTWED/-/commits/master]

A linear memory CUDA algorithm for solving Time Warp Edit Distance.

About

This is a novel parallel implementation of Time Warp Edit Distance.
The original algorithm was described by Marteau in:
Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching (2009).
A variant of the code from that paper is included in
reference_implementation, and was used to compare results. There is
also a wiki
page [https://en.wikipedia.org/wiki/Time_Warp_Edit_Distance].

The original TWED algorithm is O(n^2) in time and space. This
algorithm is roughly O(n * n/p) in time for p (CUDA) cores. Most
importantly, cuTWED is linear in memory, using storage for roughly
6*nA + 6*nB elements.

In the process of understanding the dynamic program data dependencies in
order to parallelize towards the CUDA architecture, I devised a method
with improved memory access patterns and the ability to massively
parallelize over large problems. This is accomplished by a procession of
a three diagonal band moving across the dynamic program matrix in
nA+nB-1 steps. No O(n^2) matrix is required anywhere. Note, this
is not an approximation method. The full and complete TWED dynamic
program computation occurs with linear storage.

The code is provided in a library that has methods for double and
float precision. It admits input time series in R^N as arrays of
N-dimensional arrays in C-order (time is the slow moving axis).

For typical problems computable by the original TWED implementation,
utilizing cuTWED and thousands of CUDA cores achieves great speedups.
For common problems speedups are one to two orders of magnitude, capable
of achieving 200x acceleration on a P100 GPUs in doubles. More so, the
linear memory footprint allows for the computation of previously
intractable problems. Large problems, large systems of inputs can be
computed much more effectively now.

Some speed comparisons and a more formal paper will follow.

Reference Implementation

Marteau’s original code with a some minor changes has been included in
this package. It is built both as a C library and part of the Python
package cuTWED.ctwed. The minor changes are an extra argument
dimension to admit R^N inputs, and more common handling of norm
(nth-root). These modications were made to facilitate refence testing
cuTWED and also make the original code more general.

ctwed is also included for users without a CUDA card who find other
implementations too slow.

Getting Started

For many users the prepackaged (linux) Python distribution is the
simplest way to get the code. If you have CUDA10/11 and a Python 3.6+
manylinux compatible installation you can try the prepackged wheels with:

pip install cuTWED

For other situations, or users seeking maximum performance, instructions
follow for building the core CUDA libray, installing, and building
the Python bindings from source.

Requirements

For the CUDA code you will need NVCC, a CUDA capable card and CMake.
Otherwise, the CUDA code has no dependencies.

If you do not have CMake or it is too old, a lot of people just pip
install it pip install cmake>=3.11. Otherwise you’ll need to
refer to their (Kitware) docs for your situation.

For the Python binding pip manages the specific depends and
installation of the Python interface after you have built the main CUDA
C library. Generally requires numpy, pycuda, and cffi. I
recommend you use virtualenv or conda to manage Python.

Building

Building has two stages.
First the CUDA C library is built and installed.
Second the Python bindings (if desired) are built on top of that.

The CUDA C library may be permanently installed to your system,
in a standard fashion, with some customization via CMake.
Alternatively a manual local install option is described below.

Building the core CUDA C library

Note you may customize the call to cmake below with flags like
-DCMAKE_INSTALL_PREFIX=/opt/, or other flags you might require.

git a copy of the source code
git clone https://github.com/garrettwrong/cuTWED
cd cuTWED

setup a build area
mkdir build
cd build
cmake ../ # configures/generates makefiles

make
make -j # builds the software

This should create several files in the build directory including
libcuTWED.so, *.h headers, and some other stuff. To install to
your system permanently (may require sudo):

make install

If you would rather just want to temporarily have the library
available on your linux machine you can just use the LD path.
This makes no changes to your system outside the repo and this shell process.
Assuming you are still in your build directory, add the library to your path.
Users may decide to add a similar line permanently to their .bashrc or equivalent.

export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

Python

Once you have the CUDA C library readied, we can use pip for the
Python bindings. From the root of the git repo:

pip install .

If you are planning to edit the code, you might prefer pip install in
local editable mode instead.

pip install -e .

Checking

Assuming you have built both the CUDA library and the Python bindings,
you can run the unit test suite:

pytest

Development Testing

For developers there is a whole mess of configured tests which you can
run with:

tox --skip-missing-interpreters

I hope to improve this soon, but there are a lot of complication
running hybrid codes with free CI tools, and also packaging properly
with Python etc that need to be worked through. Some are most easily
addressed by using a managed CI host, but this is non free…. I suspect
this is largely why you do not see a plethera of free high performance
hybrid codes… perhaps a future project…

Using cuTWED in other programs

C/C++

In C/C++ you should be able to include "cuTWED.h" and link with the
shared library libcuTWED.so. This is what I do in test.x. The
public methods are extern C mangled and should be usable from both C and
C++ without issue.

Float (32bit) versions of all the public methods are included in the
shared library. They simply have an f appended, for example,
twedf is the float version of twed. You may choose which one is
suitable for your application. I use floats in testf.x.

There are currently two main ways to invoke the cuTWED alogorithm,
twed and twed_dev. First twed is the most common way, where
you pass C arrays on the host, and the library manages device memory and
transfers for you.

Alternatively, if you are already managing GPU memory, you may use
twed_dev which expects pointers to memory that resides on the gpu. I
have also provided malloc, copy, and free helpers in case it makes sense
to reuse memory. See cuTWED.h. All logic and size checks for such
advanced cases are expected to be owned by the user.

There is an additional batch method. Until I have a chance to write up
better documentation, you may find example use in test_batch,
test_batch_dev, and a small but respectable ML batch problem set in
test_synthetic_validation.py.

I have included a Jupyter Notebook which demonstrates validation
using the UCI Pseudo Periodic Synthetic Time Series Data Set [http://archive.ics.uci.edu/ml/datasets/Pseudo+Periodic+Synthetic+Time+Series]. This is a much larger dataset.

Future plans include optimization and multi-gpu options for large
batches..

Python

from cuTWED import twed

For Python I have included basic pip installable Python bindings. I use
it in tests/test_basic.py. If you are curious, these are implemented
by a cffi backend which parses the C header. which is built for you
by setuptools. The main Python interface is in cuTWED.py. This
requires that you have built the library, and have it installed in a
location known to the system or available in your LD_LIBRARY_PATH.

I have also wrapped up the GPU only memory methods in Python, using
PyCUDA gpuarrays. Examples in double and single precision are in
tests/test_basic_dev.py.

from cuTWED import twed_dev

The batch interfaces are twed_batch and twed_batch_dev
respectively. Currently it is doing a barbaric synchonization. I have a
branch using streams with events, but I need to validate it is robust
before I push it. That gives back about another 20% in batch mode
afaict.

If you want to run Marteau’s C code from Python you can try ctwed.
For (very) small problems you may find his original C code is faster.

Troubleshooting and Known Issues

This software is early in its life cycle. The following are known
issues:

	Portability, I expect you have linux at this time.

	I have not had time to profile or optimize it, there are things I
know to have improvements.

If you find an issue or bug with the code, please submit an issue. More
details about this can be found in the contributing document.

License

GPLv3

Copyright 2020 Garrett Wright, Gestalt Group LLC

Contributing

Contributions are welcome, and they are greatly appreciated!

Bug reports

When reporting a bug [https://github.com/garrettwrong/cuTWED/issues] please include:

	Your operating system name and version.

	Your CUDA Toolkit version, driver, and card(s).

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

cuTWED could always use more documentation, whether as part of the
official cuTWED docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/garrettwrong/cuTWED/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a voluntary project. You are welcome to improve things and push the improvements back to the author for review. Consider discussing such work in the issue.

Development

To set up cuTWED for local development:

	Fork cuTWED [https://github.com/garrettwrong/cuTWED]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:garrettwrong/cuTWED.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request as a draft.

For merging, you should:

	Include passing tests (run tox) 1 2.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can try running against what you have with `tox --skip-missing-interpreters`.

	2

	You may find the basic Docker containers helpful. They can be easily extended and still kept in isolation. See .gitlab-ci.yml for a basis.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Garrett Wright - https://www.gestaltgp.com

Changelog

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 cuTWED v2.0.2.

 		
 About

 		
 Reference Implementation

 		
 Getting Started

 		
 Requirements

 		
 Building

 		
 Checking

 		
 Using cuTWED in other programs

 		
 Troubleshooting and Known Issues

 		
 License

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

